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M ost chemistry courses involving group theory
do not treat the infinite point groups C∞v or
D∞h. Even the character tables themselves areIn this paper we

show how linear

molecules such as

CO2, C2H2, and

HCN can be

treated using the

point groups Cnv

or Dnh for general

values of n.

not transparent looking, with the profusion of
ellipses. Because of this, it is not possible to deduce the vi-
brational symmetry modes of CO2, even though the symmetric,
asymmetric stretch, and doubly-degenerate bending modes are
discussed in almost all physical chemistry courses. In this paper
we show how linear molecules such as CO2, C2H2, and HCN can
be treated using the point groups Cnv or Dnh for general values
of n. When determining which irreducible representations com-
prise the normal vibrational modes of a linear molecule such as
CO2, we show that the n-dependence vanishes. The calculations
presented here do not require advanced mathematical knowledge
and could be incorporated into an undergraduate chemistry cur-
riculum in which group theory is presented.
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Introduction
One of the nicest applications of group theory is the elucidation of the vibrational sym-
metry modes of molecules. To do this, we determine the (reducible) representation 03N

based on the cartesian coordinates assigned to each of the N atoms in the molecule, and
then use the equation [1]

ai0 = 1

h

∑
R̂

ni(R̂)χi(R̂)χ0(R̂) (1)

to decompose 03N into the irreducible representations of the point group of the molecule.
In Equation (1), ai0 is the coefficient for the ith irreducible representation, h is the order
of the group, ni(R̂) is the number of symmetry operations in the class containing the
symmetry operator R̂, χi is the character in the ith irreducible representation, and χ0is
the character in the reducible representation. Using these coefficients, the irreducible
representations corresponding to rotation (0rot) and translation (0trans) can be subtracted,
leaving the irreducible representations corresponding to the normal vibrational modes
(0vib) of the molecule. For non-linear molecules which belong to finite point groups, this
task is easily done; however, this is not an elementary task for linear molecules that belong
to the point groups C∞v and D∞h.

In the past, several methods of treatment for the infinite point groups have been presented.
Strommen and Lippincott [2] used the irreducible representations and symmetry opera-
tions corresponding to point groups of lower symmetry to generate the coefficients ai0.
Specifically, they used the groups C2v and D2h. While the correct irreducible represen-
tations for 0vib were obtained, their method does not appear to be rigorous. Jaffé and
David [3] used the theory of continuous groups to generate the character tables for the
infinite point groups; however, the knowledge of advanced group theory makes this ap-
proach impractical for use in undergraduate chemistry courses. Huang and Wang [4] used
Equation (1) explicitly for treatment of the infinite point groups and obtained the correct
form of 0vib in each case. This method involves infinite series and a rather complex and
confusing method of showing that each series either vanishes or is equal to some multiple
of h. Additionally, the character tables used for this study were never mentioned, despite
the fact that character tables for infinite point groups have different symmetry operators in
different textbooks [1], [5], [6]. Again, the nonrigorous nature of the approach also makes
it impractical for the classroom. A new approach presented by Lie [7] uses the general
character tables Cnv or Dnh to determine the irreducible representations that correspond
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to normal vibrational modes in linear molecules; however, the character tables presented
for the groups Cnv or Dnh differ according to the parity of n. Lie’s method never took
this into account, and the limit n → ∞ appears to have been taken.

What is presented here is a new method for treating the infinite point groups that in-
volves a basic knowledge of group theory, elementary algebra, and trigonometry for a
centrosymmetric molecule.

Method
For the linear XYZ molecule (e.g., HCN) of C∞v symmetry, we use the character table
given in Table 1 for Cnv, n odd. The character tables for the groups Cnv (n odd or n even)
can be generated by examining the character tables for the groups C3v, C4v, C5v, and C6v

[6]. For Cnv, n odd, the reducible representation is

Cnv, n odd E C j
n σv

03N 9 3
[
1 + 2 cos

(
2π j
n

)]
3

Here j = 1, 2, . . . , (n − 1)/2. The number of classes C j
n depends on the value of n. For

C3v there is only one such class, C3. For C5v there are two classes, C1
5 and C2

5 . For the
general case Cnv there will be (n − 1)/2 classes of this type. The order of the group is
then given by

h = 1 + 2
[
(n − 1)

2

]
+ n

h = 2n (2)

Information such as the group order and the number of classes, which is needed to
determine the ai0 can be found at the bottom of each character table. The characters in
03N are obtained by noting the transformation properties of the three cartesian coordinates
located on each atom, or by using the methods of Levine [1, pp. 437–438]. Equation (1)
gives the number of times that each irreducible representation appears in the reducible
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TABLE 1. Character Table for Cnv, n odd

E 2C j
n nσv

A1 1 1 1 z

A2 1 1 −1 Rz

E1 2 2 cos
(

2π j

n

)
0 (x, y); (Rx , Ry)

EN 2 2 cos
(

2π N j)

n

)
0

Order = 2n j = 1, 2, . . . ,
n − 1

2

# Classes = (n + 3)/2 N = 2, . . . ,
n − 1

2

representation:

aA1 = 1

2n

1 · 1 · 9 + 2 · 1 · 3
(n−1)/2∑

j=1

[
1 + 2 cos

(
2π j

n

)]
+ n · 1 · 3


= 1

2n
[9 + 3(n − 1) − 6 + 3n]

= 3

The terms in curly brackets above follow the prescription given in Equation (1). For
example the term 1 · 1 · 9 corresponds to the operation E . The numbers 1, 1, and 9
correspond to the number of symmetry operations in the class E , the character for E in
the irreducible representation, and the character of E in the reducible representation. The
necessary summations are given in Table 2 [8]. Similarly,

aA2 = 1

2n

1 · 1 · 9 + 2 · 1 · 3
(n−1)/2∑

j=1

[
1 + 2 cos

(
2π j

n

)]
+ n · (−1) · 3


= 1

2n
[9 + 3(n − 1) − 6 − 3n]

= 0
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TABLE 2. Series Used in the Calculations

n odd n even

n−1
2∑

j=1

cos
(

2π j

n

)
= −1

2

n−2
2∑

cos
(

2π j

n

)
= 0

n−1
2∑

j=1

cos
(

2π N j
n

)
= −1

2

n−2
2∑

j=1

(−1) j =


−1, n
2 even

0, n
2 odd


n−1

2∑
j=1

cos
(

2π N j
n

)
cos

(
2π j

n

) n−2
2∑

j=1

(−1) j cos
(

2π j
n

)
=


0, n

2 even

−1, n
2 odd


=


n−2

4 , N = 1

− 1
2 , N > 1


n−2

2∑
j=1

cos
(

2π j
n

)
= n

4
− 1

n−2
2∑

j=1

cos
(

2π N j

n

)
=


−1, N even

0, N odd


n−2

2∑
j=1

cos
(

2π N j

n

)
cos

(
2π j

n

)
=


0, N even

−1, N odd


N > 1

aE1 = 1

2n

1 · 2 · 9 + 2 · 2 · 3
(n−1)/2∑

j=1
cos

(
2π j

n

) [
1 + 2 cos

(
2π j

n

)]
+ 0


= 1

2n

[
18 + 12

(
−1

2

)
+ 24

(
n − 2

4

)]

= 3

aEN = 1

2n

1 · 2 · 9 + 2 · 2 · 3
(n−1)/2∑

j=1
cos

(
2π N j

n

) [
1 + 2 cos

(
2π j

n

)]
+ 0


= 1

2n

[
18 + 12

(
−1

2

)
+ 24

(
−1

2

)]

= 0, N > 1
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where, once again, the necessary summations are given in Table 2. Therefore,

03N = 3A1 + 3E1 [9 species]

Table 1 shows that

0trans = A1 + E1 [3]

0rot = E1 [2]

and so we have that

0vib = 2A1 + E1 [4]

The numbers in brackets refer to the total dimension of each representation. This is anal-
ogous to the degrees of freedom associated with each property. The irreducible represen-
tations labeled E or 5 are two-dimensional, so they each supply two degrees of freedom.
Note that this result was obtained without taking the limit n → ∞. Another notation used
to describe irreducible representations for the infinite point groups is given in References
1 and 6. For example, using the irreducible representations for C∞v, 0vib = 2

∑+ +5.

The character table for Cnv, n even (Table 3) is quite different than that of Cnv, n odd. In
this case, 03N is

Cnv, n even E C j
n C2 σv σd

03N 9 3
[
1 + 2 cos

(
2π j

n

)] −3 3 3

where j = 1, 2, . . . , (n − 2)/2. Following the same procedure as the n odd case we see
that

03N = 3A1 + 3E1 [9 species]

Table 2 shows that

0trans = A1 + E1 [3]

0rot = E1 [2]
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TABLE 3. Character Table for Cnv, n even

E 2C j
n C2 n/2σv n/2σd

A1 1 1 1 1 1 z

A2 1 1 1 −1 −1 Rz

B1 1 (−1) j (−1)
n
2 1 −1

B2 1 (−1) j (−1)
n
2 −1 1

E1 2 2 cos
(

2π j
n

)
−2 0 0

EN 2 2 cos
(

2π N j
n

)
2(−1)N 0 0 (x, y)(Rx , Ry)

Order = 2n j = 1, 2, . . . , n−2
4

#Classes = (n + 3)/2 N = 2, . . . , n−2
2

and, exactly like the n odd case, we have that

0vib = 2A1 + E1 [4]

Now, consider the linear XYX molecule (e.g., CO2), which has D∞h symmetry. See
Table 4 for the character table corresponding to Dnh, n odd. This character table, along
with the one for Dnh, n even, was generated using direct products [5]. For n odd the point
group Dnh is the direct product of Dn and σh. The first set of operators is simply the Dn

operators, while the second set is a product of the Dn operators with σh. The operations
σh · C j

n are improper rotations. The reducible representation 03N is

Dnh,
n odd E C j

n C2 σv σh · C j
n σv

03N 9 3
[
1 + 2 cos

(
2π j

n

)] −1 1 −1 + 2 cos
(

2π j
n

)
3
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TABLE 4. Character Table for Dnh, n odd

E 2C j
n nC2 σh 2σh · C j

n nσv

A′
1 1 1 1 1 1 1

A′
2 1 1 −1 1 1 −1 Rz

E ′
1 2 2 cos

(
2π j

n

)
0 2 2 cos

(
2π j
n

)
0 (x, y)

E ′
N 2 2 cos

(
2π N j

n

)
0 2 2 cos

(
2π N j

n

)
0

A′′
1 1 1 1 −1 −1 −1

A′′
2 1 1 −1 −1 −1 1 z

E ′′
1 2 2 cos

(
2π j

n

)
0 −2 −2 cos

(
2π j
n

)
0 (Rx , Ry)

E ′′
N 2 2 cos

(
2π N j

n

)
0 −2 −2 cos

(
2π N j

n

)
0

Order = n + 6 N = 2, . . . , n−1
2

# Classes = n + 6 N = 2, . . . , n−1
2

where j = 1, 2, . . . , (n − 1)/2. Using Equation (1) and Table 2, we obtain

03N = A′
1 + 2E ′

1 + 2A′′
2 + E ′′

1 [9 species]

0trans = A′′
2 + E ′

1 [3]

0rot = E ′′
1 [2]

0vib = A′
1 + A′′

2 + E ′
1 [4]

For n even, the Dnh point group is the direct product of Dn and i , as shown in Table 5.
The direct products i ·C j

n represent improper rotations. Note again that the character table
for n even is quite different than that for n odd. In this case, 03N is

Dnh,
n even E C j

n C2(z) C ′
2 C ′′

2 i i · C j
n σh σv σd

03N 9 3
[
1 + 2 cos

(
2π j
n

)] −3 −1 −3 −1 − 2 cos
(

2π j
n

)
1 3 3
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TABLE 5. Character Table for Dnh, n even

E 2C j
n C2(z)

n
2 C ′

2(x) n
2 C ′′

2 (y) i 2i · C j
n σh n/2σv n/2σd

A1g 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz

B1g 1 (−1) j (−1)n/2 1 −1 1 (−1) j (−1)n/2 1 −1

B2g 1 (−1) j (−1)n/2 −1 1 1 (−1) j (−1)n/2 −1 1

E1g 2 2 cos
(

2π j
n

) −2 0 0 2 2 cos
(

2π j
n

) −2 0 0 (Rx , Ry)

ENg 2 2 cos
(

2π N j
n

)
2(−1)N 0 0 2 2 cos

(
2π N j

n

)
2(−1)N 0 0

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z

B1u 1 (−1) j (−1)n/2 1 −1 −1 −(−1) j −(−1)n/2 −1 1

B2u 1 (−1) j (−1)n/2 −1 1 −1 −(−1) j −(−1)n/2 1 −1

E1u 2 2 cos
(

2π j
n

) −2 0 0 −2 −2 cos
(

2π j
n

)
2 0 0 (x, y)

ENu 2 2 cos
(

2π N j
n

)
2(−1)N 0 0 −2 −2 cos

(
2π N j

n

) −2(−1)N 0 0

Order = 4n j = 1, 2, . . . , n−2
2

# Classes = n + 6 N = 2, . . . , n−2
2
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where j = 1, 2, . . . , (n − 2)/2. Using Equation (1) and Table 2, we find that

03N = A1g + E1g + 2A2u + 2E1u [9 species]

0trans = A2u + E1u [3]

0rot = E1g [2]

0vib = A1g + A2u + E1u [4]

which is exactly the same as the n odd case. As Table 2 indicates, some of the summations
required to determine 03N depend on the parity of n/2 or N ; however, these cases always
result in the ai0 equal to zero.

Now consider the linear XYYX molecule (e.g., C2H2) with D∞h symmetry. For n odd,
we obtain

n odd E C j
n C2 σh σh · C j

n σv

03N 12 4
[
1 + 2 cos

(
2π j
n

)]
0 0 0 4

where j = 1, 2, . . . , (n − 1)/2 and

03N = 2A′
1 + 2E ′

1 + 2A′′
2 + E ′′

1 [12 species]

0trans = A′′
2 + E ′

1 [3]

0rot = E ′′
1 [2]

0vib = 2A′
1 + A′′

2 + E ′
1 [7]

For n even, we find that

n even E C j
n C2(z) C ′

2 C ′′
2 i i · C j

n σh σv σd

03N 12 4
[
1 + 2 cos

(
2π j
n

)] −4 0 0 0 0 0 4 4
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where j = 1, 2, . . . , (n − 2)/2, and

03N = 2A1g + 2E1g + 2A2u + 2E1u [12 species]

0trans = A2u + E1u [3]

0rot = E1g [2]

0vib = 2A1g + A2u + E1g + E1u [7]

Note that once again we have the same result with n even as with n odd.

Conclusion
The method used in the above examples treats the cases of Cnv and Dnh, where n is arbi-
trary. When applying Equation 1 to linear molecules, the n-dependence on the coefficients
ai0 vanishes, so that the limit n → ∞ never becomes necessary. This is a straightfor-
ward method that follows the standard group theory approach for determining the normal
vibrational modes in molecules and could be included as a group or individual project
in any undergraduate class in which group theory is introduced. Recently, spreadsheets
have been used for similar calculations involving other point groups [9]. Spreadsheet
calculations could be performed for the infinite point groups using the procedure outlined
here.
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